
Chapter 7
Human Interface Devices

asyrani.com



Types of Human Interface Devices





Magnavox Odyssey, released in 1972, was the first video game console.

http://en.wikipedia.org/wiki/Magnavox_Odyssey




Interfacing with a HID



Polling

Some simple devices, like game pads and old-

school joysticks, are read by polling the hardware 

periodically (usually once per iteration of the main 

game loop). 

This means explicitly querying the state of the 

device, either by reading hardware registers 

directly, reading a memory-mapped I/O port, or via 

a higher-level software interface (which, in turn,

reads the appropriate registers or memory-mapped 
I/O ports).



Interrupts

An interrupt is an electronic signal generated by the 

hardware, which causes the CPU to temporarily 

suspend execution of the main program and run a 

small chunk of code called an interrupt service 

routine (ISR).

Interrupts are used for all sorts of things, but in the 

case of a HID, the ISR code will probably read the 

state of the device, store it off for later processing, 

and then relinquish the CPU back to the main 

program. 



Wireless 
Devices

The inputs and outputs of a Bluetooth device, like 

the WiiMote, the DualShock 3 and the Xbox 360 

wireless controller, cannot be read and written by 

simply accessing registers or memory-mapped 

I/O ports. Instead, the software must ñtalkò to the 

device via the Bluetooth protocol. 

The software can request the HID to send input 

data (such as the states of its buttons) back to 

the host, or it can send output data (such as 

rumble settings or a stream of audio data) to the 
device.



Types of Inputs



Digital Buttons

In software, the state of a digital button (pressed or not 

pressed) is usually represented by a single bit. Itôs 

common for 0 to represent not pressed (up) and 1 to 

represent pressed (down). 

But again, depending on the nature of the circuitry, and 

the decisions made by the programmers who wrote 

the device driver, the sense of these values might be 
reversed.







Analog Axes and 
Buttons

An analog input is one that can take on a range of 

values (rather than just 0 or 1). These kinds of 

inputs are often used to represent the degree to 

which a trigger is pressed, or the two-dimensional 
position of a joystick





Relative Axes

The position of an analog button, trigger, joystick, or thumb stick is 

absolute, meaning that there is a clear understanding of where zero 

lies. However, the inputs of some devices are relative . 

For these devices, there is no clear location at which the input value 

should be zero. Instead, a zero input indicates that the position of the 

device has not changed, while non-zero values represent a delta from 

the last time the input value was read. Examples include mice, mouse 
wheels, and track balls.



Accelerometers

These are relative analog inputs, much 

like a mouseôs two-dimensional axes.

When the controller is not accelerating 

these inputs are zero, but when the 

controller is accelerating, they 

measure the acceleration up to ±3 g 

along each axis, quantized into three 

signed 8-bit integers, one for each of x, 
y, and z.

1g (å 9.8 m/s2).



3D 
Orientation 
with the 
WiiMoteor 
Sixaxis

A trio of accelerometers can be used to 

detect the orientation of the WiiMote or 

Sixaxis joypad, because of the fact that we 

are playing these games on the surface of 

the Earth where there is a constant 

downward acceleration due to gravity of 1g 

(å 9.8 m/s2). 

If the controller is held perfectly level, with

the IR sensor pointing toward your TV set, 

the vertical (z) acceleration should be 
approximately ï1 g.



Cameras

The WiiMote has a unique feature 

not found on any other standard 

console HIDðan infrared (IR) 

sensor. This sensor is essentially a 

low-resolution camera that records 

a two-dimension infrared image of 
whatever the WiiMote is pointed at.





Types of Outputs



Rumble

ÅThis allows the controller to 
vibrate ƛƴ ǘƘŜ ǇƭŀȅŜǊΩǎ ƘŀƴŘǎΣ 
simulating the turbulence or 
impacts that the character in the 
game world might be 
experiencing. 

ÅVibrations are usually produced by 
one or more motors, each of 
which rotates a slightly 
unbalanced weight at various 
speeds.



Force-Feedback

ÅForce feedback is a technique in 
which an actuator on the HID is 
driven by a motor in order to slightly 
resist the motion the human 
operator is trying to impart to it. 

ÅIt is common in arcade driving 
games, where the steering wheel 
resists ǘƘŜ ǇƭŀȅŜǊΩǎ attempt to turn it, 
simulating difficult driving conditions 
or tight turns.



Audio

ÅAudio is usually a stand-alone engine 
system. However, some HIDs provide 
outputs that can be utilized by the 
audio system. 

ÅFor example, the WiiMote contains a 
small, low-quality speaker. 

ÅThe Xbox 360 controller has a headset 
jack and can be used just like any USB 
audio device for both output 
(speakers) and input (microphone). 



Other Inputs 
and 
Outputs?



Game Engine HID Systems



RAW Data -> Messaging and Abstraction -> GAME

Dead zones, Analog signal filtering,
Event detection (e.g., 
butt on up, butt on 

down),

Detection of button 
sequences and 

multibutton
combinations (known as 

chords),

Gesture detection,
Management of 
multiple HIDs for 
multiple players,

Multiplatform HID 
support,

Controller input re-
mapping,

Context-sensitive 
inputs,

The ability to 
temporarily disable 

certain inputs.



Dead Zone

A joystick, thumb stick, shoulder trigger, or any other analog axis 

produces input values that range between a predefined minimum and 

maximum value, which weôll call Imin and Imax. 

When the control is not being touched, we would expect it to produce a 

steady and clear ñundisturbedò value, which weôll callI0. 

The undisturbed value is usually numerically equal to zero, and it either

lies half-way between Imin and Imax for a centered, two-way control like a 
joystick axis, or it coincides with Imin for a one-way control like a trigger.



Analog 
Signal 
Filtering

A discrete first-order low-pass filter can be implemented by 

combining the current unfiltered input value with last frameôs 

filtered input.



Detecting 
Input 
Events

Button up/down event (change in state)
ButtonDowns= (prevButtonStates^ButtonStates) & ButtonStates

Chords (Multiple simultaneous Buttons)
How do you tell chord from individual buttons?
a) Use button effect plus the chord effect
b) Delay button effect or effect only upon release
c) Chord effect pre-empts button effects

Tappingand Sequences
Compare ɲ¢ ǘƻ ŀ ɲ¢ƳŀȄ= 1/fmin, if greater drop/reset





Managing 
Multiple 
HIDs for 
Multiple 
Players

Most game machines allow two or more HIDs to be attached for 

multiplayer games. 

The engine must keep track of which devices are currently 

attached and route each oneôs inputs to the appropriate player 

in the game. This implies that we need some way of mapping 

controllers to players. 

This might be as simple as a one-to-one mapping between 

controller index and player index, or it might be something more 

sophisticated, such as assigning controllers to players at the 
time the user hits the Start butt on.





Cross-
Platform 
HID Systems

For example, if our game is to ship on Xbox 360 and PS3, the layout of the 

controls (butt ons, axes and triggers) on these two joypads are almost

identical. 

The controls have different ids on each platform, but we can come up with 

generic control ids that cover both types of joypad quite easily.



Input Re-Mapping

Digital buttons. States are packed into a 32-bit word, one bit per butt on.

Unidirectional absolute axes (e.g., triggers, analog buttons). Produce 

floating-point input values in the range [0, 1].

Bidirectional absolute axes (e.g., joy sticks). Produce floating-point 

input

values in the range [ï1, 1].

Relative axes (e.g., mouse axes, wheels, track balls). Produce floating-

point input values in the range [ï1, 1] , where ±1 represents the maximum

relative off set possible within a single game frame (i.e., during a period
of 1/30 or 1/60 of a second).



Context-Sensitive Controls

ÅIn many games, a single physical control can have different functions, 
depending on ŎƻƴǘŜȄǘΦ ! ǎƛƳǇƭŜ ŜȄŀƳǇƭŜ ƛǎ ǘƘŜ ǳōƛǉǳƛǘƻǳǎ άǳǎŜέ button. 

ÅIf pressed while ǎǘŀƴŘƛƴƎ ƛƴ ŦǊƻƴǘ ƻŦ ŀ ŘƻƻǊΣ ǘƘŜ άǳǎŜέ button might cause 
the character to open the door. If it is pressed while standing near an object, 
it might cause the player character to pick up the object, and so on.

ÅAnother common example is a modal control scheme. When the player is 
walking around, the controls are used to navigate and control the camera. 

ÅWhen the player is riding a vehicle, the controls are used to steer the 
vehicle, and the camera controls might be different as well.




