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A game engine is a complex piece of software 
consisting of many interacting subsystems.

When the engine first starts up, each 
subsystem must be configured and initialized 
in a specific order





We could define our singleton instances as 
globals, without the need for dynamic 
memory allocation





A static variable that is declared
within a function will not be constructed 
before main() is called, but rather on the first 
invocation of that function. 

So if our global singleton is function static, we 
can control the order of construction for our 
global singletons







Suggested by textbooks



A Simple Approach 
That Works







The main() function





• It’s simple and easy to implement.

• It’s explicit. You can see and understand the 
start-up order immediately by just looking at the 
code.

• It’s easy to debug and maintain. If something 
isn’t starting early enough, or is starting too early, 
you can just move one line of code.



How to illustrate it in 
simple way



Ogre3D

• Controlled by the singleton object Ogre::Root.

• It contains pointers to every other subsystem in Ogre and 
manages their creation and destruction.

Naughty Dog’s Uncharted: Drake’s Fortune

• Uses a similar explicit technique for starting up its subsystems

• A wide range of operating system services, third party 
libraries, and so on must all be started up during engine 
initialization



Memory Management



Dynamic memory allocation via malloc() or C++’s global 
operator new
- But it is a very slow operation

On modern CPUs, the performance of a piece of 
software is often dominated by its memory access 
patterns



Dynamic memory allocation via malloc() and 
free() or C++’s global new and delete 
operators—also known as heap allocation—is 
typically very slow.

The high cost can be attributed to two main 
factors. 



First, a heap allocator is a general-purpose facility, so it 
must be written to handle any allocation size, from one 
byte to one gigabyte. 

This requires a lot of management overhead, making 
the malloc() and free() functions inherently slow. 

Second, on most operating systems a call to malloc() or 
free() must first context-switch from user mode into 
kernel mode, process the request, and then context-
switch back to the program.



NEW AND DELETE

ÅMemory allocated from 'Free Store'

ÅReturns a fully typed pointer.

Ånew (standard version) never returns a NULL 
(will throw on failure)

ÅAre called with Type-ID (compiler calculates 
the size)

ÅHas a version explicitly to handle arrays.

ÅReallocating (to get more space) not handled 
intuitively (because of copy constructor).

ÅWhether they call malloc/free is 
implementation defined.

ÅCan add a new memory allocator to deal with 
low memory (set_new_handler)

Åoperator new/delete can be overridden 
legally

Åconstructor/destructor used to 
initialize/destroy the object

MALLOC

ÅMemory allocated from 'Heap'

ÅReturns a void*

ÅReturns NULL on failure

ÅMust specify the size required in bytes.

ÅAllocating array requires manual calculation 
of space.

ÅReallocating larger chunk of memory simple 
(No copy constructor to worry about)

ÅThey will NOTcall new/delete

ÅNo way to splice user code into the allocation 
sequence to help with low memory.

Åmalloc/free can NOTbe overridden legally



Stack-Based Allocators



Many games allocate memory in a stack-like 
fashion. Whenever a new game level is loaded, 
memory is allocated for it. Once the level has been 
loaded, little or no dynamic memory allocation 
takes place. 

At the conclusion of the level, its data is unloaded 
and all of its memory can be freed. It makes a lot 
of sense to use a stack-like data structure for these 
kinds of memory allocations.



Allocate 
Memory 
malloc()

Add pointer to 
the top of the 

stack

All memory 
addresses below 

– used

All memory 
above- free

Top pointer 
initialize lowest 

memory 
address

Each allocation 
request moves 
the pointer up

Most recently allocated block can 
be freed by moving the top 

pointer





Simplest way to understand it

Create a program class system

Declare some memory reserved

Add pointer/memory

Always update your pointer and 
empty your declared memory



Double-Ended Stack Allocators



Pool allocators



A pool allocator works by pre-allocating a 
large block of memory whose size is an exact 
multiple of the size of the elements that will 
be allocated.



A pool of 4 × 4 matrices would be an exact 
multiple of 64 bytes (16 elements per matrix 
times four bytes per element)

Each element within the pool is added to a linked 
list of free elements; when the pool is first 
initialized, the free list contains all of the 
elements

Whenever an allocation request is made, we 
simply grab the next free element off the free list 
and return it. When an element is freed, we 
simply tack it back onto the free list.



Aligned Allocators



All memory allocators must be capable of returning aligned 
memory blocks. This is relatively straightforward to implement. 

We simply allocate a little bit more memory than was actually 
requested, adjust the address of the memory block upward 
slightly so that it is aligned properly, and then return the 
adjusted address. 

Because we allocated a bit more memory than was requested, 
the returned block will still be large enough, even with the slight 
upward adjustment







Single-Frame Allocators



Single-frame allocator is implemented by reserving 
a block of memory and managing it with a simple 
stack allocator as described above. 

At the beginning of each frame, the stack’s “top” 
pointer is cleared to the bottom of the memory
block. 

Allocations made during the frame grow toward 
the top of the block. Rinse and repeat



Double-Buffered Allocators



A double-buffered allocator allows a block of 
memory allocated on frame i to be used on 
frame (i + 1). 

To accomplish this, we create two single 
frame stack allocators of equal size and then 
ping-pong between them every frame







Memory Fragmentation





Fragmentation

ÅFragmentation is the inability to reuse memory that 
is free

ÅExternal fragmentation occurs when enough free 
memory is available but isn’t contiguous
ÅMany small holes

ÅInternal fragmentation arises when a large enough 
block is allocated but it is bigger than needed
ÅBlocks are usually split to prevent internal fragmentation



What causes fragmentation?

ÅIsolated deaths
ÅWhen adjacent objects do not die at the same time.

ÅTime-varying program behavior 
ÅMemory requests change unexpectedly



Why traditional approaches don’t work

ÅProgram behavior is not predictable in general

ÅThe ability to reuse memory depends on the future interaction 
between the program and the allocator
Å100 blocks of size 10 and 200 of size 20?



How do we avoid 
fragmentation?

A single death is a tragedy. A million deaths is a statistic.

-Joseph Stalin



Understanding program behavior

ÅCommon behavioral patterns
ÅRamps
ÅData structures that are accumulated over time

ÅPeaks
ÅMemory used in bursty patterns usually while building up 

temporal data structures.

ÅPlateaus
ÅData structures build quickly and are used for long periods of time



Mechanisms

ÅMost common mechanisms used
ÅSequential fits

ÅSegregated free lists
ÅBuddy System

ÅBitmap fits

ÅIndex fits



Sequential fits

ÅBased on a single linear list
ÅStores all free memory blocks

ÅUsually circularly or doubly linked

ÅMost use boundary tag technique

ÅMost common mechanisms use this method.



Sequential fits

Å Best fit, First fit, Worst fit

Å Next fit
Å Uses a roving pointer for allocation

Å Optimal fit
Å “Samples” the list first to find a good enough fit

Å Half fit
Å Splits blocks twice the requested size



Segregated free lists

ÅUse arrays of lists which hold free 
blocks of particular size

ÅUse size classes for indexing 
purposes
ÅUsually in sizes that are a power of two

ÅRequested sizes are rounded up to 
the nearest available size
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32
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128





Segregated free lists

Å Simple segregated list
Å No splitting of free blocks

Å Subject to severe external fragmentation

Å Segregated fit
Å Splits larger blocks if there is no free block in the appropriate free list

Å Uses first fit or next fit to find a free block

Å Three types: exact lists, strict size classes with rounding or size classes with 
range lists.



Buddy system

ÅA special case of segregated fit
ÅSupports limited splitting and coalescing

ÅSeparate free list for each allowable size

ÅSimple block address computation

ÅA free block can only be merged with its unique 
buddy.
ÅOnly whole entirely free blocks can be merged.



Buddy system

16 MB

8 MB

4 MB

3 MB

Free



Buddy system
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Binary buddies

ÅSimplest implementation
ÅAll buddy sizes are powers of two

ÅEach block divided into two equal parts

ÅInternal fragmentation very high
ÅExpected 28%, in practice usually higher



Fibonacci buddies

ÅSize classes based on the fibonacci series
ÅMore closely-spaced set of size classes

ÅReduces internal fragmentation

ÅBlocks can only be split into sizes that are also in the series

ÅUneven block sizes a disadvantage?
ÅWhen allocating many equal sized blocks



Fibonacci buddies
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2   3   5   8   13   21   34   55 …

Size series:

Splitting blocks:



Weighted buddies

ÅSize classes are power of two
ÅBetween each pair is a size three times a power of two

ÅTwo different splitting methods
Å2x numbers can be split in half

Å2x*3 numbers can be split in half or unevenly into two sizes.



Weighted buddies
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2     3    4     6     8    12    16   24 …
(21)   (20*3)    (22)   (21*3)   (23)    (22*3)    (24)    (23*3) …

Size series:

Splitting of 2x*3 numbers:



Double buddies

ÅUse 2 different binary buddy series
ÅOne list uses powers of two sizes

ÅOther uses powers of two spacing, offset by x

ÅSplitting rules
ÅBlocks can only be split in half

ÅSplit blocks stay in the same series



Double buddies
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2     4      8    16    32    64   128 …
(21)     (22)      (23)     (24)      (25)      (26)      (27)…

Size series:

Splitting of 3*2x numbers:

3     6     12   24    48    96  192 …
(3*20)  (3*21) (3*22)  (3*23)  (3*24)  (3*25)  (3*26)…



Avoiding Fragmentation in Game Engine 
Development





Cache Coherency





A cache is a special type of memory that can be 
read from and written to by the CPU much more 
quickly than main RAM. 

The basic idea of memory caching is to load a 
small chunk of memory into the high-speed cache 
whenever a given region of main RAM is first read.

Such a memory chunk is called a cache line and is 
usually between 8 and 512 bytes, depending on 
the microprocessor architecture.



On subsequent read operations, if the requested 
data already exists in the cache, it is loaded from 
the cache directly into the CPU’s registers—a 
much faster operation than reading from main 
RAM. 

Only if the required data is not already in the 
cache does main RAM have to be accessed.
This is called a cache miss . Whenever a cache 
miss occurs, the program is forced to wait for the 
cache line to be refreshed from main RAM



The rules for moving data back and forth between main RAM 
are of course complicated by the presence of a level 2 cache. 

Now, instead of data hopping from RAM to cache to CPU and 
back again, it must make two hops—first from main RAM to 
the L2 cache, and then from L2 cache to L1 cache. 

We won’t go into the specifics of these rules here. (They differ 
slightly from CPU to CPU anyway.) But suffice it to say that RAM 
is slower than L2 cache memory, and L2 cache is slower than 
L1 cache. Hence L2 cache misses are usually more expensive 
than L1 cache misses, all other things being equal.



Read Further

Chapter Engine Support System
- 5.1 Subsystem Start-Up and Shut-Down
- 5.2 Memory Management
and Internet Materials via Google, etc


