Engine Support System

asy om

Seeveeee

——
c
@
&
£
a
L
)
>
)
Q
Q
3]
>
£
c |
2

A game engine is a complex piece of software
consisting of many interacting subsystems.

When the engine first starts up, each
subsystem must be configured and initialized
in a specific order

P e e -

L I N
— i — — —— — —

We could define our sing

glo
me

nals, without t

mory allocatio

ne neec

A

eton Instances as
for dynamic

class EenderManager

{

public:
RenderManager ()
{
// start up the manager...
}
~RenderManager ()
{
// shut down the manager...
}
//

bi

// singleton instance
atatic RenderManager gRenderManager;

A static variable that is declared
within a function will not be constructed

vefore main() is called, but rather on the first
invocation of that function.

So if our global singleton is function static, we
can control the order of construction for our
global singletons

class RenderManager

{

public:

// Get the one and only instance.
static RenderManager& get ()
{
// This function-static will be constructed on the
// first call to this function.
static RenderManager sSingleton;
return sSingleton;

}

RenderManager ()
// Btart up other managers we depend on, by
// calling their get () functions first...
VideoManager: :get () ;
TextureManager: :get () ;

// Now start up the render manager.

//
}

~RenderManager ()

{

//

}
bi

// Ehut down the manager.

static RenderManager& get ()

{

static REenderManager* gpSingleton = NULL;
if (gpSingleton == NULL)

gpSingleton = new RenderManager;

)

ASSERT (gpSingleton) ;
return *gpSingleton;

}

Suggested by textbooks

A Simple Approach
That Works

class RenderManager

{

public:
RenderManagexr ()

{
}

// do nothing

~RenderManager ()

{
)

// do nothing

volid startUp ()

{
)

// start up the manager...

void shutDown ()

{

// shut down the manager...

)

//

class PhysicsManager
class AnimationManager

class MemoryManager

class FileSystemManager

//

RenderManager
PhysicaManager
AnimationManager
TextureManager

VideoManager
MemoryManager
FileSystemManager

//

{ /* similar... */ };
{ /* similar... */ };
{ /* similar... */ };
{ /* similar... */ };
gRenderManager;
gPhysicsManager;
gAnimationManager;
gTextureManager;
gVideoManager;
gMemoryManager;
gFileSystemManager:;

The main() function

int main(int argc, const char* argv)

{
// Start up engine systems in the correct order.
gMemoryManager. startUp() ;
gFileSystemManager. startUp() ;
gVidecoManager. startUp () ;
gTextureManager. startUp () ;
gRenderManager. startUp() ;
gAnimationManager. startUp/();
gPhysicsManager. startUp() ;

/

// Run the game.
gSimulationManager. zrunf();

// Ehut everything down, in reverse order.
/I
gPhysicsManager. shutDown() ;
gAnimationManager. shutDown /() ;
gRenderManager. shutDown () ;
gFileSystemManager. shutDown/() ;
gMemoryManager. shutDown () ;

return 0;

e [t's simple and easy to implement.

e |[t's explicit. You can see and understand the
start-up order immediately by just looking at the
code.

e |[t's easy to debug and maintain. If something
isn’t starting early enough, or is starting too early,
you can just move one line of code.

ow to illustrate it in
imple way

Ogre3D

e Controlled by the singleton object Ogre::Root.

e |t contains pointers to every other subsystem in Ogre and
manages their creation and destruction.

o

X e Uses a similar explicit technique for starting up its subsystems
2L 2| © A wide range of operating system services, third party

Naughty Dog’s Uncharted: Drake’s Fortune

libraries, and so on must all be started up during engine
initialization

Memory Management

Dynamic memory allocatiotie malloc() or C++’s global

operator new
- But it is a very slow operation

On modern CPUs, the performance of a piece of
software is often dominated by its memory access

patterns

Dynamic memory allocation via malloc() and
free() or C++’s global new and delete
operators—also known as heap allocatior-s

typically very slow.

The high cost can be attributed to two main
factors.

First, a heap allocator is a general-purpose facility, so it
must be written to handle any allocation size, from one
byte to one gigabyte.

This requires a lot of management overhead, making
the malloc() and free() functions inherently slow.

Second, on most operating systems a call to malloc() or
free() must first context-switch from user mode into
kernel mode, process the request, and then context-
switch back to the program.

NEW AND DELETE
A Memory allocated from 'Free Store'
A Returns a fully typed pointer.

A new (standard version) never returns a NULL
(will throw on failure)

A Are called with Type-ID (compiler calculates
the size)

A Has a version explicitly to handle arrays.

A ReaIIocatin%(to get more space) not handled
intuitively (because of copy constructor).

A Whether they call malloc/free is
implementation defined.

A Can add a new memory allocator to deal with
low memory (set_new_handler)

A operator new/delete can be overridden
legally

A constructor/destructor used to
Initialize/destroy the object

MALLOC

A Memory allocated from 'Heap'

A Returns a void*

A Returns NULL on failure

A Must specify the size required in bytes.

A Allocating array requires manual calculation
of space.

A Reallocating larger chunk of memory simple
(No copy constructor to worry about)

A They will NOTcall new/delete

A No way to splice user code into the allocation
sequence to help with low memory.

A malloc/free can NOTbe overridden legally

Stack-Based Allocators

Many games allocate memory in a stack-like
fashion. Whenever a new game level is loaded,
memory is allocated for it. Once the level has been

oaded, little or no dynamic memory allocation
takes place.

At the conclusion of the level, its data is unloaded
and all of its memory can be freed. It makes a lot

of sense to use a stack-like data structure for these
kinds of memory allocations.

Allocate Add pointer to All memory
Memory ——| the top of the addresses below
malloc() stack — used
V
. .Tc.)p.pomter Each allocation
All memory initialize lowest
— reqguest moves
above- free memory the pointer u
address P P
v

Most recently allocated block can
be freed by moving the top
pointer

Obtain marker after allocating blocks A and B.

T

Allocate additional blocks C , D and E

T

Free back to marker.

T

Figure 5.1. Stack allocation, and freeing back to a marker.

Simplest way to understand it

-

Create a program class system

Declare some memory reserved

.

\.
~
Ve

-

Add pointer/memory

.

-

Always update your pointer and
empty your declared memory

.

Double-Ended Stack Allocators

-

Figure 5.2. A double-ended stack allocator.

Pool allocators

A pool allocator works by pre-a
arge block of memory whose s
multiple of the size of the elem
oe allocated.

locatir

7€ 1S 3

g d
N exact

ents tfr

at will

A pool of 4 x 4 matrices would be an exact
multiple of 64 bytes (16 elements per matrix
times four bytes per element)

Each element within the pool is added to a linked
list of free elements; when the pool is first
initialized, the free list contains all of the
elements

Whenever an allocation request is made, we
simply grab the next free element off the free list
and return it. When an element is freed, we
simply tack it back onto the free list.

Aligned Allocators

All memory allocators must be capable of returning aligned
memory blocks. This is relatively straightforward to implement.

We simply allocate a little bit more memory than was actually
requested, adjust the address of the memory block upward

slightly so that it is aligned properly, and then return the
adjusted address.

Because we allocated a bit more memory than was requested,

the returned block will still be large enough, even with the slight
upward adjustment

BANK 2

BANK 1

D7 databus DO

D3

data bus (one memory cycle)

Do

Byte
Addressable
Memory

Banked
Memory

0x000C
0x0008

O0004
Ooc 0000

1000h 1010h 1020h

1011hl > Address after adding 15 bytes

Worst scenario of 16-byte data alignment
Address 1011h must move 15 bytes forward to be aligned.

< Framel __ _Frame2 _ _ _________ Frames_ ___________ e SurTent Frame

Single-Frame Allocators

Single-frame allocator is implemented by reserving
a block of memory and managing it with a simple
stack allocator as described above.

At the beginning of each frame, the stack’s “top”
pointer is cleared to the bottom of the memory

block.

Allocations made during the frame grow toward
the top of the block. Rinse and repeat

Double-Buffered Allocators

A double-buffered a

memory allocatec
frame (1 + 1).

O

locator allows a block of

N frame | to be used on

To accomplish this, we create two single
frame stack allocators of equal size and then
ping-pong between them every frame

COMPUTE1
(Buf1, — Buf1_)

(b)

COMPUTEQ
(Bufo, — Bufo_)

COMPUTE1
(Buft, — Buf1,)

time

>
MEC T || puTo | GETO || PUT1 | GET IIPUTO [ceTo || PUT1 | GET1 || PuTO | GETO |

SPU TEO | COMPUTE1 | COMPUTED | COMPUTET | COMPUTEQ | COMPUTE1

FRAGMENTED MEMORY

b [N N
l:_:II_Ijrl [

CANTPUT INT HERE!

Memory Fragmentation

After one allocation. ..

After eight allocations ...

After eight allocations and three frees. ..

After n allocations and mfrees. ..

Figure 5.3. Memory fragmentation.

M0 WU LN AR

Fragmentation

AFragmentation is the inability to reuse memory that
is free

AExternal fragmentation occurs when enough free
memory is available but isn’t contiguous

AMany small holes

Alnternal fragmentation arises when a large enough
block is allocated but it is bigger than needed

ABlocks are usually split to prevent internal fragmentation

What causes fragmentation?

Alsolated deaths
A When adjacent objects do not die at the same time.

ATime-varying program behavior
AMemory requests change unexpectedly

Why traditional approaches don’t work

AProgram behavior is not predictable in general

AThe ability to reuse memory depends on the future interaction
between the program and the allocator

A 100 blocks of size 10 and 200 of size 20?

How do we avoid
fragmentation?

A single death is a tragedy. A million deaths is a statistic.
-Joseph Stalin

Understanding program behavior

ACommon behavioral patterns
ARamps

A Data structures that are accumulated over time

A Peaks

A Memory used in bursty patterns usually while building up
temporal data structures.

APlateaus
A Data structures build quickly and are used for long periods of time

Mechanisms

AMost common mechanisms used

ASequential fits

ASegregated free lists
A Buddy System

ABitmap fits

Alndex fits

Sequential fits

ABased on a single linear list
AStores all free memory blocks
AUsually circularly or doubly linked
AMost use boundary tag technique

AMost common mechanisms use this method.

Sequential fits

A Best fit, First fit, Worst fit
A Next fit

A Uses a roving pointer for allocation

A Optimal fit
A “Samples” the list first to find a good enough fit

A Half fit

A Splits blocks twice the requested size

Segregated free lists

AUse arrays of lists which hold free
blocks of particular size

AUse size classes for indexing
purposes
AUsually in sizes that are a power of two

ARequested sizes are rounded up to
the nearest available size

16

32

64

128

binl b2 b3 e bmm7E8 bmm79 bing0

tiza | 168 &8 328 | ... 5128 | 5TE8B | 6408

cghunks

. Allscated Memary

Fras Mamary

Segregated free lists

A Simple segregated list
A No splitting of free blocks
A Subject to severe external fragmentation

A Segregated fit

A Splits larger blocks if there is no free block in the appropriate free list
A Uses first fit or next fit to find a free block
A

Three types: exact lists, strict size classes with rounding or size classes with
range lists.

Buddy system

AA special case of segregated fit
ASupports limited splitting and coalescing
ASeparate free list for each allowable size
ASimple block address computation

AA free block can only be merged with its unique
buddy.

AOnly whole entirely free blocks can be merged.

Buddy system

16 MB

Free

3 MB

8 MB

4 MB

Buddy system

16 MB

v
v
v
v
v
4
4
4
4
v
v
v
M |

3 MB

8 MB

Free

Free

4 MB

Buddy system

16 MB

v
v
v
v
v
4
4
4
4
v
v
v
M |

3 MB

8 MB

Free

4 MB

Free

Free

Buddy system

16 MB

v
v
v
v
v
4
4
4
4
v
v
v
M |

8 MB

Free

4 MB

°

Free

Binary buddies

ASimplest implementation

A Al buddy sizes are powers of two
AEach block divided into two equal parts

Alnternal fragmentation very high
AExpected 28%, in practice usually higher

Fibonacci buddies

ASize classes based on the fibonacci series

AMore closely-spaced set of size classes
AReduces internal fragmentation
ABlocks can only be split into sizes that are also in the series

AUneven block sizes a disadvantage?
AWhen allocating many equal sized blocks

Fibonacci buddies

Size series:

2 3 5 8 13 21 34 55..

Splitting blocks:

Weighted buddies

ASize classes are power of two
ABetween each pair is a size three times a power of two

ATwo different splitting methods
A2*numbers can be split in half
A2*3 numbers can be split in half or unevenly into two sizes.

Weighted buddies

Size series:

2 3 4 6 8 12 16 24 ..

(21) (2°%3) (22) (2™*3) (23) (2%*3) (2%) (23*3)..

Splitting of 2**3 numbers:

Double buddies

AUse 2 different binary buddy series
AOne list uses powers of two sizes
A Other uses powers of two spacing, offset by x

ASplitting rules
ABlocks can only be split in half
ASplit blocks stay in the same series

Double buddies

Size series:

2 4 8 16 32 64 128..
(2Y) (2 (23 (29 (2 (29 (27)..

3 6 12 24 48 96 192..
(3%20) (3*21) (3*22) (3*23) (3*2%) (3*25) (3*25)..

Splitting of 3*2* numbers:

Allocated blocks , always contiguous Single free block, always contiguous

|
allocation
|
<dealht:aﬁnr|
I I

Figure 5.4. A stack allocator is free from fragmentation problems.

Allocated and free blocks all the same size

AN NN

Figure 5.5. A pool allocator is not degraded by fragmentation.

_ 1B

Avolding Fragmentation in Game Engine
Development

Figure 5.6. Defragmentation by shifting allocated blocks to lower addresses.

Cache Coherency

CPU Die

CPU

<{H—5't_l>

L1
Cache

oRVEar

L2
Cache

=

Main RAM

Figure 5.7. Level 1 and level 2 caches.

A cache is a special type of memory that can be
read from and written to by the CPU much more
guickly than main RAM.

The basic idea of memory caching is to load a
small chunk of memory into the high-speed cache
whenever a given region of main RAM is first read.

Such a memory chunk is called a cache linend is
usually between 8 and 512 bytes, depending on
the microprocessor architecture.

On subsequent read operations, if the requested
data already exists in the cache, it is loaded from
the cache directly into the CPU’s registers—a
much faster operation than reading from main
RAM.

Only if the required data is not already in the
cache does main RAM have to be accessed.

This is called a cache miss\Whenever a cache
miss occurs, the program is forced to wait for the
cache line to be refreshed from main RAM

The rules for moving data back and forth between main RAM
are of course complicated by the presence of a level 2 cache.

Now, instead of data hopping from RAM to cache to CPU and
back again, it must make two hops—first from main RAM to
the L2 cache, and then from L2 cache to L1 cache.

We won’t go into the specifics of these rules here. (They differ
slightly from CPU to CPU anyway.) But suffice it to say that RAM
is slower than L2 cache memory, and L2 cache is slower than
L1 cache. Hence L2 cache misses are usually more expensive
than L1 cache misses, all other things being equal.

Read Further

Chapter Engine Support System

- 5.1 Subsystem Start-Up and Shut-Down
- 5.2 Memory Management

and Internet Materials via Google, etc

